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Time-delay autosynchronization of the spatiotemporal dynamics in resonant tunneling diodes
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The double barrier resonant tunneling diode exhibits complex spatiotemporal patterns including low-
dimensional chaos when operated in an active external circuit. We demonstrate how autosynchronization by
time-delayed feedback control can be used to select and stabilize specific current density patterns in a nonin-
vasive way. We compare the efficiency of different control schemes involving feedback in either local spatial
or global degrees of freedom. The numerically obtained Floquet exponents are explained by analytical results
from linear stability analysis.
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I. INTRODUCTION

Since the ground breaking work by Ott, Grebogi, a
Yorke @1#, chaos control has evolved into a central issue
nonlinear science@2#. While earlier methods of chaos contr
have used a rather complicated calculation of the con
force from the Poincare map, recent control schemes ba
on time-delay autosynchronization@3,4# are much simpler to
handle and have been applied to a number of real w
problems@5–13#.

One intriguing aspect is the possibility of noninvasi
control. This refers to the stabilization of a target state wh
is not changed by the control term and the control fo
vanishes once the target state has been reached. A na
choice for the target state is unstable periodic orbits~UPOs!,
since they are dense in the chaotic attractor of the unc
trolled system.

While earlier work has concentrated on low-dimensio
dynamic systems described by maps or ordinary differen
equations@14#, the emphasis has recently shifted towar
stabilization of spatiotemporal patterns. It was shown that
a generic nonlinear reaction-diffusion model of activat
inhibitor type with one spatial degree of freedom, differe
noninvasive time-delayed feedback methods can be use
suppress chaotic behavior@15–18#, and their respective do
mains of control have been compared and interpreted
terms of Floquet spectra.

In this paper, we will apply time-delayed feedback cont
schemes to a semiconductor nanostructure which is curre
of great interest@19#: the double barrier resonant tunneling
~DBRT! diode. This device is well known as an electron
oscillator, and complex spatiotemporal patterns of the cur
density have been reported in numerical simulations@20–
24#, including chaotic spatiotemporal scenarios@25#. Here,
we propose to apply time-delay autosynchronization to
bilize those spatiotemporal breathing and spiking patte
under a wide range of operating conditions, and indu
stable periodic oscillations. The paper is organized as
lows. After the introduction of the DBRT model in Sec. I
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we examine the dynamical bifurcation scenarios leading
the formation of lateral current density patterns of the unc
trolled system in Sec. III. We find parameter regimes feat
ing chaotic breathing as well as chaotic spiking. In Sec.
time-delayed feedback control is used for the stabilization
periodic spiking and breathing oscillations. We compare
control performance for different control schemes. The
tails of the model are given in the Appendix.

II. THE MODEL

The DBRT is a semiconductor nanostructure which co
sists of one GaAs quantum well sandwiched between
AlGaAs barriers along thez direction~cf. Fig. 1!. The quan-
tum well defines a two-dimensional electron gas in thex-y
plane. The spatially homogeneous steady states give rise
Z-shaped current–voltage characteristic@26# exhibiting bista-
bility in a range of applied voltages. The middle branch
the current-voltage characteristic can be stabilized by ap
ing an appropriate active circuit with a negative load res
tance@27#. Complex spatiotemporal patterns can arise if t
lateral redistribution of electrons within the quantum w
@20–25,28# is taken into account. In the following, we as
sume that the extension of the device iny direction is small
and charge inhomogeneities can only appear in thex direc-
tion. Using dimensionless variables throughout, we arrive
the following equations:

en
FIG. 1. Schematic energy band structure of the DBRT. The sy

bols are explained in the Appendix.
©2003 The American Physical Society04-1
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]x S D~a!
]a

]xD1 f ~a,u!2KFa~x,t !, ~1!

du

dt
5

1

«
~U02u2r ^ j &!2KFu~ t !. ~2!

Here, the uncontrolled model@25# has been extended by th
control termsKFa and KFu representing the control force
with amplitudeK. The dynamic variables are the inhibito
u(t) and the activatora(x,t). The one-dimensional spatia
coordinatex corresponds to the direction transverse to
current flow. In the semiconductor context,u(t) denotes the
voltage drop across the device anda(x,t) is the electron
density in the quantum well. The nonlinear, nonmonoto
function f (a,u) describes the balance of the incoming a
outgoing current densities in the quantum well@Fig. 2~a!#
and D(a) is an effective, electron density dependent tra
verse diffusion coefficient@Fig. 2~b!# @29#. The local current
density in the device isj (a,u)5 1

2 @ f (a,u)12a# and ^ j &
51/L*0

L jdx is associated with the global current. Equati

FIG. 2. ~a! Nonlinear kinetic functionf (a,u) for different val-
ues of voltageu, ~b! diffusion coefficientD(a) as a function of the
electron densitya ~double-logarithmic scale!, ~c! current-voltage
characteristic for spatially homogeneous states~solid line! and fila-
mentary states~dashed line! for L530; load line for U0

5284.2895,r 5235 ~dotted line!, ~d! spatial profile of a half fila-
ment,a(x) ~solid line! and j (x) ~dotted line! (L530;u5265).
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~2! represents Kirchhoff’s law of the circuit in which th
device is operated. The external bias voltageU0, the load
resistancer, and the time-scale ratio« are dimensionless
external parameters. We consider a system of widthL with
no charge transfer through the lateral boundaries~i.e., Neu-
mann boundary conditions]xa50 atx50,L). In the Appen-
dix, we give explicit expressions forf (a,u) and D(a) and
draw the connection to the microscopic physical paramet

In the case without control force (K50), one stationary
solution of Eq.~1! is given by the homogeneous solutio
a(x)5ai

hom with f (ai
hom,u)50. Up to three different solu-

tions, ai
hom may exist for one fixed value ofu @Fig. 2~a!#.

This gives rise to aZ-shaped current-voltage characteris
j (u)5a @solid line in Fig. 2~c!#.

The spatially homogeneous stationary solutions of
coupled equations~1! and~2! are given by the intersection o
the current-voltage characteristicj (u) and the load line
which is the nullclinê j &5(U02u)/r of Eq. ~2!. States on
the middle branch of thej (u) characteristic are unstable in
passive external circuit with effective resistancer .0. By
choosingr ,0, which can be realized by an active circu
i.e., applying an additional control voltage proportional
the device current̂j & in series with the biasU0 @27#, it is, in
principle, possible to stabilize the middle branch of the s
tionary j (u) characteristic and access it experimentally, b
for large enough« Hopf bifurcations can occur, leading t
uniform limit cycle oscillations of the current and voltage

It should be noted that, depending upon the intersectio
the load line with thej (u) characteristics, the DBRT repre
sents either a bistable, or an oscillatory, or an excitable ac
medium@30#. It is remarkable that the DBRT can be operat
as an excitable system even in the spatially homogene
case. Consider the situation in Fig. 3~a! where the load line
intersects the homogeneous characteristic near the se
turning point at a low current value (j '4.63 and«570).
Due to the large value of«, the relaxation inu is much
slower than the relaxation ina. If noise pushes the system o
its fixed point in the low current regime, it quickly relaxes
a value ofa[ j in a high current state. Then, the slow rela
ation in u sets in and drags the system along the homo
neous characteristic towards highu ~since we are above th
load line! until the upper branch of the homogeneous ch
acteristic ends. At this point, the system again quickly
laxes ina, this time towards a low current state. Since we a
now below the load line, the system finally returns to t
fixed point. This excursion in phase space results in a sp
like response in the current and voltage signal upon exte
noise@Fig. 3~b!# which is characteristic for anexcitableme-
dium.

III. SPATIOTEMPORAL SCENARIOS

As the device widthL in x direction increases~the device
width in y direction is fixed and small compared toL), the
middle branch of the homogeneous solutiona2

hom @Fig. 2~c!#
becomes unstable against inhomogenous fluctuations
straightforward linear stability analysis@19# shows that this
occurs at
4-2
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L.pAU D~a2
hom!

]af ~a2
hom!

U . ~3!

Then, an additional stationary solution of Eq.~1! arises in the
form of a current filament. Figure 2~d! shows the dependenc
of a and j on the transverse spatial coordinatex for a half
filament with L530 andu5265. The dashed line in Fig
2~c! depicts the corresponding current-voltage character
^ j &(u).

The filament is stable forr ,0 at small«, but becomes
unstable by a Hopf bifurcation for large enough«. In this
case, complex spatiotemporal breathing~Fig. 4! and spiking
patterns~Fig. 5! are expected if the homogeneous fixed po
is still stable with respect to Hopf bifurcations@31#.

Choosing the load line as in Fig. 2~c! ~dotted line!, the
homogeneous fixed point on the middle branch is alw
unstable against the filamentary mode forL530, but is
stable against Hopf bifurcations up to«,16.43~dotted line
in Fig. 6!. On the other hand, a Hopf bifurcation of the ha
filament occurs already at«h

f 56.4, leading to periodic fila-
ment oscillations@Fig. 4~a!# for «.«h

f . This breathingfila-
ment undergoes a period doubling cascade for«.8.2 lead-
ing to chaos@c.f. Fig. 4~b!#. We note that the dynamic
behavior is characterized by oscillations of varying amp

FIG. 3. DBRT in the excitable regime:~a! Spatially homoge-
neous phase portrait of electron densitya vs voltage u for r
522, U05248.11, L530, «570. Solid line: trajectory of the
system under noise. Dashed lines: Load line~straight! and homoge-
neous current-voltage characteristic (Z shaped!. Dotted lines: phase
flow of the system.~b! Response ofa andu triggered by noise.
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tude around the unstable filamentary fixed point, which
typical for a chaotic breathing scenario.

With further increase of« oscillations around the homo
geneous fixed point become important and a competition
tween the two fixed points sets in. Thereby, the breath
filament transmutes into a spiking filament as in Fig. 5~a! for
«513.15. Here, two oscillations around the homogeno
fixed point are followed by one oscillation around the fil
mentary fixed point. This periodic spiking quickly becom
chaotic at further increase of«, yielding a chaotic spiking
behavior, which is characterized by a sequence of alm
homogeneous oscillations intermitted by one large filam
tary oscillation @Fig. 5~b!#. The resulting phase portrait i
reminiscent of the Ro¨ssler attractor. While breathing oscilla
tions are always close to the filamentary fixed point, the sp
ing oscillations are related to both the filamentary and
homogeneous fixed point. The complete bifurcation diagr
with respect to« is depicted in Fig. 6. We note that th
homogeneous limit cycle emerging from a Hopf bifurcati
of the homogeneous fixed point~dotted line! at «516.43
suppresses chaos with increasing« and finally becomes
stable against filamentary oscillations for«.20.2, and fur-
ther on determines the dynamics of the system.

Using the Benettin algorithm@32#, we have calculated the
two largest Lyapunov exponentsl1 and l2 for varying «
~Fig. 7!. We observe that at most one Lyapunov exponen
positive, while the second one is zero for a chaotic or
Taking into account the third largest Lyapunov exponent,
can then estimate an upper limit for the fractal dimension
the attractor after Kaplan and Yorke@33# as DKY'2.1. Al-
though the system has an infinite number of degrees of f
dom, it is therefore only weakly chaotic. The global coupli
is responsible for the suppression of extensive spatiotem
ral chaos@34#.

IV. TIME-DELAYED FEEDBACK CONTROL OF
CHAOTIC BREATHING AND SPIKING

We now apply chaos control to stabilize a particular UP
of periodt of the uncontrolled system which is embedded
a chaotic attractor. The control forcesFa andFu in Eqs.~1!
and~2! will be designed such that they do not suppress ch
by generating a new periodic solution but only by chang
the stability of a solution that already exists in the unco
trolled system. Hence,Fa andFu vanish exactly on the targe
orbit. Such a requirement is, in general, met by time-dela
feedback schemes@3#. Depending on the particular recipe
which is used for the construction of the control forces, th
are various possible control schemes. Here, we are goin
analyze four cases which have been already introduce
Ref. @16# in the context of reaction-diffusion models with
global feedback. The model we are investigating in t
present paper, Eqs.~1! and~2!, is of much more interest from
the point of view of semiconductor physics since it realis
cally describes a well-known nanostructure device~DBRT!.
It exhibits a Z-shaped current–voltage characterist
whereas the model in Ref.@16# describes a different semi
conductor heterostructure featuring anS-shaped current-
voltage characteristic. A comparison with the results of R
4-3
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FIG. 4. Spatiotemporal breath
ing patterns: electron density evo
lution, phase portrait, and voltag
time series for~a! «57.0, peri-
odic breathing,~b! «59.1, chaotic
breathing; load line as in Fig. 2.
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@16# enables us to estimate which properties of the con
schemes are robust and do not depend on the partic
choice of the model equations. In addition, we will find o
whether some schemes are particularly useful for applica
in semiconductor devices. Concerning the details of the c
trol schemes the reader may consult Ref.@16#. But to keep
our presentation self-contained, we recall the necessary
tation.

We may chooseFu5Fvf with a generic voltage feedbac
force defined by

Fvf~ t !5u~ t !2u~ t2t!1RFvf~ t2t!. ~4!

Here,R is a memory parameter which damps sudden chan
in the control force by taking into account multiple dela
with a decaying weight of earlier states of the system@4#. A
02620
l
lar

n
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control scheme of this type is called extended time-de
autosynchronization. Such a scheme allows fornoninvasive
control, since an unstable state may be maintained with v
ishingly small control forces.

For the control forceFa in the spatial degree of freedom
we will alternatively use either alocal control force

F loc~x,t !5a~x,t !2a~x,t2t!1RFloc~x,t2t!, ~5!

where every spatial point is controlled independently of
neighboring points or aglobal control force

Fglo~ t !5^a&~ t !2^a&~ t2t!1RFglo~ t2t!, ~6!

with ^a&51/L*0
Ladx, where the same control force is ap

plied to every spatial point. This second choiceFa5Fglo
4-4



TIME-DELAY AUTOSYNCHRONIZATION OF THE . . . PHYSICAL REVIEW E 68, 026204 ~2003!
FIG. 5. Spatiotemporal spiking patterns: as in Fig. 4 but~a! «513.15, periodic spiking;~b! «516.5, chaotic spiking.
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may be experimentally favorable since the spatial averag
related to the total charge in the quantum well and does
require a spatially resolved measurement. In the followi
we will concentrate on the question how the coupling of
control forces to the spatial and discrete degrees of free
influences the performance of the control. The UPO in qu
tion will be a flip orbit, i.e., its largest complex valued Flo
quet exponentl will obey Iml5p/t. This type is practi-
cally important, as it naturally arises in period doublin
scenarios, and the torsion of the orbit associated with Iml is
a necessary ingredient for time-delayed feedback contro
work @35#. Recently, time-delay methods have also been
tended to the stabilization of orbits without torsion by addi
a controller associated with an additional unstable degre
freedom@36#.
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Physically, the control forces may be realized by app
priate electronic control circuits.KFu corresponds to an ad
ditional control voltage applied in series with the biasU0 and
KFa may be implemented by a spatially extended lateral g
electrode which influences the two-dimensional electron
in the quantum well locally or globally.

In principle, the control performance of time-delaye
feedback methods can be studied by linear stability anal
of the differential-delay equations~1! and~2! around the tar-
get orbit. This is difficult for a general control scheme, sin
the stability of the orbit is governed by Floquet eigenmod
and by the largest complex valued growth ratesL ~Floquet
exponent!, which are modified by the control force in a com
plicated way. Still there exists a particularly simple contr
4-5



ed
lt

rit

ca

led
The

ol

de
the

onal

lt-
ck
od

th

r-

is

lized
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scheme, called diagonal control@35,37#, for which L(K,R)
satisfies the exact equation

L1K
12e2Lt

12Re2Lt
5l, ~7!

wherel is the complex Floquet exponent of the uncontroll
system. Another control scheme for which analytic resu
are available is theFloquet mode controlwhere the control
force is a projection onto the unstable Floquet mode@17,18#.

In our model, we achieve diagonal control by settingFa
5F loc andFu5Fvf ~cf. Table I!, which is a straightforward
extension of the diagonal control for discrete systems~cf.
Ref. @38#!.

We now want to control the period-one orbit~dashed line
in Fig. 6! in the chaotic breathing regime@Fig. 4~b!#. As
explained in Sec. III, this orbit is generated by the superc
cal Hopf bifurcation of the stationary filament at«5« f

h . It
subsequently becomes unstable by the period doubling
cade with increasing«. From Fig. 8~b!, we note that, before
the control is switched on (K50), a sawtoothlike structure
in the ~fictitious, since not yet applied! control force uFus

FIG. 6. Bifurcation diagram of maxima and minima of the vo
age U vs «. Thick dotted lines—homogeneous solution; thi
dashed lines—period-one breathing orbit, thick solid lines—peri
three spiking orbit. Parameters and load line as in Fig. 2~c!.

FIG. 7. The two largest Lyapunov exponents as a function of
bifurcation parameter«; load line as in Fig. 2.
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5sup$uFvfu,uF locu% appears. This happens as the uncontrol
system approaches and abandons the UPO ergodically.
slope of the increasing control force is given byl. Such a
pattern is useful for tuning the critical parametert empiri-
cally. After the diagonal control is switched on, the contr
force decays exponentially asuFus;uexpL(K,R)tu @Fig. 8~b!#
to a new level which is about three orders of magnitu
smaller than the uncontrolled level. At the same time,
voltage signal becomes periodic@Fig. 8~a!# and the chaotic
attractor in the phase portrait collapses to a one-dimensi
periodic orbit.

-

e

TABLE I. Overview of different control schemes with the co
responding choices ofFa andFu .

Type of control Fa Fu

Diagonal control F loc Fvf

Global control with voltage feedback Fglo Fvf

Global control without voltage feedback Fglo 0
Pure voltage control 0 Fvf

Local control without voltage feedback F loc 0

FIG. 8. Diagonal control in the DBRT, where the control force
switched on att55000. ~a! Voltageu vs time,~b! supremum of the
control force vs time,~c! phase portrait~global current vs voltage!
showing the chaotic breathing attractor and the embedded stabi
periodic orbit ~thick solid curve!. Parameters:r 5235, «59.1, t
57.389,K50.137,R50.
4-6
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By changing the control parametersK andR, we observe
that the regime of successful control in theK-R plane@Fig.
9~a!# exhibits a typical triangular shape, bounded by a fl
instability (ReL50, ImL5p/t) to its left and by a Hopf
~torus! bifurcation to its lower right. These two boundarie
may also be obtained by solving Eq.~7! for ReL50. We
find that the analytical prediction for the control boundar
are in excellent agreement with the numerical results@see
Fig. 9~a!#.

To confirm the bifurcations at the boundaries, we consi
the real part of the Floquet spectrum of the orbit subjecte
control for varyingK andR50 @Fig. 9~b!#. Complex conju-
gate Floquet exponents show up as doubly degenerate p
The largest nontrivial exponent decreases with increasinK
and collides at negative values with a branch coming fr
negative infinity. As a result, a complex conjugate pair d
velops and the real part increases again. The real part o
exponent finally crosses the zero axis giving rise to a H
bifurcation. The numerical simulations agree well with t
analytical result.

We now replace the local control forceFa5F loc by the
global controlFa5Fglo without changing the voltage feed

FIG. 9. ~a! Control domains in theK-R parameter plane for
diagonal control of the unstable periodic orbit of Fig. 4~b! with
period t57.389. d denotes successful control in the numeric
simulation,• denotes no control, lines: analytical result accordi
to Eq. ~7!. ~b! Leading real partsL of the Floquet spectrum fo
diagonal control in dependence onK (R50), the dotted line de-
notes a complex conjugate pair of Floquet exponents.d denotes
analytical results from Eq.~7!.
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back ~i.e., global control with voltage feedback in Table I!.
Figure 10 shows the corresponding control regime and F
quet spectrum. The control domain looks similar in shape
for diagonal control, although the domain for the glob
scheme is drastically reduced. The shift in the control bou
aries is due to a different scenario in the Floquet spectr
Now ReL decreases more slowly with increasingK than in
the diagonal case, and thus the flip bifurcation takes plac
large values ofK. At the same time, the complex conjuga
pair responsible for the Hopf bifurcation crosses the z
axis with a larger slope and therefore at a smallerK value
than in the diagonal case.

It is now interesting to note that if we keepFa5Fglo as
before but remove the voltage feedback completely, the c
trol domain is shifted to higherK values and at the same tim
is dramatically increased@Fig. 11~a!#. From the Floquet spec
trum, we see that after the flip bifurcation the largest Floq
exponent does not immediately hybridize into a comp
conjugate pair, but the Hopf bifurcation is caused by anot
complex conjugate pair which is not connected to the larg
Floquet exponent. Thereby, the Hopf bifurcation is su
pressed and the control regime is increased. This behavi
very similar to the one observed in a different reactio
diffusion model~modeling a heterostructure hot electron d
ode, HHED! @16#, where it was found that additional contro
of the global variableu may gradually reduce the contro
regime to zero.

From the practical point of view, the most relevant cont

l

FIG. 10. Same as Fig. 9 for global control with voltage feedba
@~b!: R50.7].
4-7
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UNKELBACH et al. PHYSICAL REVIEW E 68, 026204 ~2003!
scheme is the pure voltage control, i.e.,Fu5Fvf , Fa50,
since the voltage variable may be conveniently measured
manipulated by an external electronic device. The co
sponding control domain and Floquet exponents are sh
in Fig. 12. Here, the control regime is even somew
smaller than in the case of global control with voltage fee
back but the shape of the control regime and the Floq
spectrum are qualitatively very similar. It is encouraging th
this kind of control is at all possible, since it opens up t
opportunity to conveniently study chaos control in a re
world device.

We finally consider the case of local control without vo
age feedback~Fig. 13!. Here, the control regime is surpris
ingly even larger than for diagonal control. The shape of
control regime is not triangular any more as before, but
an additional edge at lowK andR values. The reason for thi
edge can be explained from the Floquet diagram. Her
Floquet exponent from below collides with the largest F
quet exponent at positive real values before the flip bifur
tion occurs. This complex conjugate pair then crosses
zero axes from above and undergoes an inverse Hopf b
cation. For larger values ofK another complex conjugate pa
performs a second Hopf bifurcation seemingly unrelated
the first one.

An overview of the different coupling schemes conside
in this section is given in Table I. By comparing the differe
control schemes, we may characterize the influence of

FIG. 11. Same as Fig. 9 for global control without voltage fee
back @~b!: R50.1]. Note that the scale of theK axis is changed.
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voltage control. If the voltage control is switched on, t
largest Floquet exponent rises quickly after the collision w
an exponent coming from below and participates in the H
bifurcation at the right boundary of the control regime. If o
the other hand, the voltage control is switched off, the larg
Floquet exponent only rises slowly after the collision, a
often the Hopf bifurcation at the right boundary is caused
a complex conjugate pair which is independent of the larg
Floquet exponent. In this case, the Hopf boundary is shif
to larger values ofK than for diagonal control. The choice o
the control forceFa influences the decrease of ReL(K) at
small K. For Fa5F loc this decrease is large and the fl
boundary practically coincides with the one obtained for
agonal control, while forFa5Fglo the flip boundary is
shifted to higherK values sinceu]KReL(K)u is small. For
Fa50, the slopeu]KReL(K)u is even smaller, shifting the
boundary to even higherK values.

So far, we have stabilized the period-one breathing or
We have investigated whether the obtained results are
cific for a given UPO or whether similar results can be o
served for different orbits such as the period-three spik
orbit ~cf. thick solid lines in Figs. 5 and 6! which stands for
the second basic dynamical pattern~spiking! in the DBRT
system. Figure 14 shows the control regimes for differ
control schemes. Again we note that diagonal control is v
well predictable by the analytic formula~7! @Fig. 14~a!#,
whereas omitting the voltage control shifts the Hopf bord
to large K values and replacing local with global contr
shifts the flip boundary to largerK values. For pure voltage

- FIG. 12. Same as Fig. 9 for pure voltage control@~b!: R50.6].
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control and global control with voltage feedback no dom
of control was found. Nevertheless, features of the differ
control schemes are similar for both breathing and spik
orbits.

V. TRACKING AND DEPENDENCE OF THE CONTROL
PERFORMANCE ON THE LYAPUNOV EXPONENT

Having stabilized periodic orbits for a particular set
parameter values, one is in addition able to follow such
orbit through a continuous change of a parameter. Suc
kind of tracking is quite common in control of chaos and h
been demonstrated even in the context of time-delayed f
back control. The period-one breathing orbit can be c
trolled continuously in a whole range of values of« ~cf. thick
dashed lines in Fig. 6 for diagonal control!. Note that since
the periodt of the UPO depends on«, t needs to be read
justed while sweeping«. It is then even possible to stabiliz
the period-one orbit in higher periodic windows, where t
target orbit is obviously not part of the attractor. This ope
up the possibility of obtaining stable self-sustained volta
oscillations independently of parameter fluctuations. T
Floquet exponentl also depends on« and this allows us to
study the control performance as a function of the larg
Floquet exponent of the UPO. Thus, through the track
scheme we are also able to study the influence of
Lyapunov exponent on the control performance and to co
pare the result with recent theoretical predictions@37#.

FIG. 13. Same as Fig. 9 for local control without voltage fee
back @~b!: R520.55].
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In Fig. 15~a!, the control performance for global contro
with voltage feedback for fixedR is plotted. As expected, the
regime of control is considerably smaller than the analyti
predictions for diagonal control. Figure 15~b! shows the con-
trol performance for pure voltage feedback and different v
ues for R. Although the control regimes are much small
than predicted for diagonal control, the trend in the shift
the control regime for increasingR is qualitatively similar.

Surprisingly, we find a finiteK value for the flip boundary
as lt→0 @Fig. 15~b!#. This is in marked contrast to th
analytical results for diagonal control, where the flip boun
ary extrapolates to zero forlt→0. To understand why this
is the case, let us consider a situation where we apply p
voltage control to astableorbit. From the Floquet spectrum
in Fig. 16, we see that with increasing control force t
stable orbit is destabilized by a flip bifurcation, then becom
stable again by a second flip bifurcation, before it fina

-

FIG. 14. Control domains for spiking orbit. Lines: analytic
results for diagonal control.~a! diagonal control,~b! global control
without voltage feedback,~c! local control without voltage feed-
back ~parameters:«513.44,t520.15).
4-9



tro

b
ed

pa
on
-
n

ac
pi
it
e

e
o
ol
n

ge
vi

the
the
the
ed-
trol
n-
e-

or-
in

uc-

of

or

aper
by

r-

y

tes

e

s

hat
s

nce

m

UNKELBACH et al. PHYSICAL REVIEW E 68, 026204 ~2003!
undergoes the usual Hopf bifurcation at highK values. Such
a reentrance scenario does not happen for diagonal con

VI. CONCLUSIONS

We have applied different schemes of chaos control
time-delay autosynchronization to a globally coupl
reaction-diffusion model describing charge transport in
semiconductor nanostructure, viz a DBRT diode. The s
tiotemporal dynamics and bifurcation scenarios of the unc
trolled DBRT in an external circuit display a variety of com
plex patterns, including breathing and spiking oscillatio
either of which can be periodic or chaotic.

We have shown that by using time-delayed feedb
methods, it is possible to stabilize unstable breathing or s
ing patterns. Different control scheme were compared w
respect to efficiency, and quantitative comparisons of th
respective control domains in theR-K parameter space wer
given and interpreted in terms of the Floquet spectra. Th
turned out to be helpful to gain insight into the contr
mechanisms and understand why the control performa
may, e.g., be improved by omitting control of the volta
variable. Our findings confirm the results obtained pre
ously for a different model@16# on a qualitative level. Inclu-

FIG. 15. Control domain in thel-K plane~a! for global control
with voltage feedback (R50.1), d—simulation; dotted line—
analytical result for diagonal control from Eq.~7!, ~b! pure voltage
control @symbols—simulation with different values ofR as given
in the legend; lines—analytical results for diagonal control fro
Eq. ~7!#.
02620
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sion of the voltage feedback in the control scheme has
tendency to reduce the control performance. But for
model system studied here, which is better adapted to
semiconductor context, we find that even pure voltage fe
back is sufficient for successful control. Thus, as a con
scheme which is particularly simple to realize experime
tally, albeit with a small control regime which requires car
ful adjustment of the control parametersR and K, we have
singled out pure voltage control. Our findings may be imp
tant for obtaining stable self-sustained voltage oscillations
resonant tunneling diodes independently of parameter fl
tuations.
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APPENDIX

In this Appendix, we provide analytical expressions f
the functionsD(a) and f (a,u) appearing in Eq.~1! and re-
late the dimensionless quantities used throughout this p
to their respective dimensional physical quantities marked
a tilda.

The voltage drop across the DBRTũ(t) and the external
bias voltageŨ0 are related to their dimensionless counte
parts by u5eũ/(kBT) and U05eŨ0 /(kBT), respectively,
with the temperatureT, the electron chargee,0, and Bolt-
zmann’s constantkB . The two-dimensional electron densit
is rescaled viaa5ãp\2/(mkBT), wherem is the effective
mass of the electron in the well. Time and space coordina
are rescaled byt5 t̃GL /\ and x5 x̃/A\mkBT/(2eGL),
where GL5GR is the transition rate for electrons from th
emitter to the quantum well~and from the quantum well to
the collector! andm is the electron mobility.

This yields a rescaling of current and resistance aj

5 ̃p\3/(emkBTGL) andr 5 r̃ e2mAGL /(p\3), respectively,
whereA is the cross sectional area of the device. Note t
the effective resistance, in general, contains two termr̃
5R2k, whereR represents an external resistor andk arises

FIG. 16. Leading real partsL of the Floquet spectrum for pure
voltage control of a stable period-one breathing orbit in depende
on K (R50.6,«58.0).
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from an active circuit with a voltage gainUc5k̃A @27#. In
the casek.R, this leads tor ,0 with particularly interesting
chaotic scenarios, as shown in the main text. The time-s
ratio is given by«5RCGL /\, whereC is the total capaci-
tance of the circuit.

The effective diffusion coefficientD(a) may be calcu-
lated by considering a generalized form of Einstein’s relat
which covers the full range from Fermi-degenerate to n
degenerate conditions and a drift term resulting from
change in the local potential due to Poisson’s equation@29#:

D~a!5aS d

r B
1

1

12exp@2a# D , ~A1!

wherer B[(4pee0\2)/(e2m) is the effective Bohr radius in
the semiconductor material,e and e0 are the relative and
absolute permittivity of the material, respectively, andd is
the effective thickness of the double-barrier structure.

The functionf (a,u) is obtained from a microscopic con
sideration of the tunneling currentsJew(a,u) and Jwc(a)
v.

d

lar

s,

.

t,

.

in
e,

02620
le

n
-
e

from the emitter to the quantum well and from the well to t
collector, respectively@25#:

f ~a,u!5F1

2
1

1

p
arctanS 2

g S x02
u

2
1

d

r B
aD D G

3F lnS 11expS he2x01
u

2
2

d

r B
aD D2aG2a.

~A2!

Here,g andx0 describe the broadening and the energy le
of the electron states in the quantum well andhe is the
dimensionless Fermi level in the emitter, all in units ofkBT.
In this paper, we chooseg56, d/r B52, he528, andx0
5114. Typical physical values correspond to units of tim
space, voltage, electron density, and current density of
order of 3.3 ps, 100 nm, 0.35 mV, 1010 cm22, 500 A cm22,
respectively, for d520 nm, GL5GR50.2 meV, kBT
50.32 meV (T54 K).
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and V. Gáspár, Phys. Rev. E59, 5266~1999!.
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