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Time-delay autosynchronization of the spatiotemporal dynamics in resonant tunneling diodes
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The double barrier resonant tunneling diode exhibits complex spatiotemporal patterns including low-
dimensional chaos when operated in an active external circuit. We demonstrate how autosynchronization by
time-delayed feedback control can be used to select and stabilize specific current density patterns in a nonin-
vasive way. We compare the efficiency of different control schemes involving feedback in either local spatial
or global degrees of freedom. The numerically obtained Floquet exponents are explained by analytical results
from linear stability analysis.

DOI: 10.1103/PhysReVvE.68.026204 PACS nunier05.45.Gg, 02.30.Ks, 85.30.Mn

[. INTRODUCTION we examine the dynamical bifurcation scenarios leading to
the formation of lateral current density patterns of the uncon-

Since the ground breaking work by Ott, Grebogi, andtrolled system in Sec. Ill. We find parameter regimes featur-
Yorke [1], chaos control has evolved into a central issue ining chaotic breathing as well as chaotic spiking. In Sec. IV,
nonlinear Sciencéz]_ While earlier methods of chaos control time-delayed feedback control is used for the stabilization of
have used a rather complicated calculation of the controPeriodic spiking and breathing oscillations. We compare the
force from the Poincare map, recent control schemes basé@ntrol performance for different control schemes. The de-
on time-delay autosynchronizati§®,4] are much simpler to  tails of the model are given in the Appendix.
handle and have been applied to a number of real world
problems[5-13. Il. THE MODEL

One intriguing aspect is the possibility of noninvasive ) i .
control. This refers to the stabilization of a target state which  1he DBRT is a semiconductor nanostructure which con-
is not changed by the control term and the control force3iStS Of one GaAs quantum well sandwiched between two
vanishes once the target state has been reached. A natuf¥f>@As barriers along the direction(cf. Fig. 1). The quan-
choice for the target state is unstable periodic oriit80g,  tum well defines a two-dimensional electron gas in xhg
since they are dense in the chaotic attractor of the uncoriR!@ne. The spatially homogeneous steady states give rise to a
trolled system. Z-shaped current—voltage characteriffi6] exhibiting bista-

While earlier work has concentrated on low-dimensionalPility in a range of applied voltages. The middle branch of
dynamic systems described by maps or ordinary differentiail® current-voltage characteristic can be stabilized by apply-
equations[14], the emphasis has recently shifted towardsid @n appropriate active circuit with a negative Ioad resis-
stabilization of spatiotemporal patterns. It was shown that fofance[27]. Complex spatiotemporal patterns can arise if the
a generic nonlinear reaction-diffusion model of activator-lateral redlstrlbut|on_of electrons within the qqantum well
inhibitor type with one spatial degree of freedom, differentl20—25,28 is taken into account. In the following, we as-
noninvasive time-delayed feedback methods can be used &'Me that the extension of the deviceyidirection is small
suppress chaotic behavifit5—1§, and their respective do- and charge inhomogeneities can only appear inxtdéec-
mains of control have been compared and interpreted ifjon. Usmg dlmen5|_onless variables throughout, we arrive at
terms of Floguet spectra. the following equations:

In this paper, we will apply time-delayed feedback control
schemes to a semiconductor nanostructure which is currently
of great interesf19]: the double barrier resonant tunneling
(DBRT) diode This device is well known as an electronic
oscillator, and complex spatiotemporal patterns of the current
density have been reported in numerical simulatip?@—

24], including chaotic spatiotemporal scenar{@$]. Here,

we propose to apply time-delay autosynchronization to sta-
bilize those spatiotemporal breathing and spiking patterns
under a wide range of operating conditions, and induce -
stable periodic oscillations. The paper is organized as fol-
lows. After the introduction of the DBRT model in Sec. I,
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(a)

(2) represents Kirchhoff’s law of the circuit in which the
device is operated. The external bias voltadg the load
resistancer, and the time-scale ratie are dimensionless
external parameters. We consider a system of widthith
no charge transfer through the lateral boundafies, Neu-
mann boundary conditionga=0 atx=0,L). In the Appen-

dix, we give explicit expressions fdi(a,u) andD(a) and
draw the connection to the microscopic physical parameters.
In the case without control forceK(=0), one stationary
solution of Eq.(1) is given by the homogeneous solution

a(x)=al™ with f(a™™,u)=0. Up to three different solu-
tions, a™™ may exist for one fixed value af [Fig. 2(@)].
This gives rise to &-shaped current-voltage characteristic
j(u)=a [solid line in Fig. Zc)].

The spatially homogeneous stationary solutions of the
coupled equationél) and(2) are given by the intersection of
the current-voltage characteristigu) and the load line
which is the nullcline(j)=(Ug—u)/r of Eq. (2). States on
the middle branch of thg(u) characteristic are unstable in a
passive external circuit with effective resistance 0. By
choosingr <0, which can be realized by an active circuit,
i.e., applying an additional control voltage proportional to
the device currentj) in series with the biatly [27], it is, in
principle, possible to stabilize the middle branch of the sta-
tionary j(u) characteristic and access it experimentally, but
for large enougle Hopf bifurcations can occur, leading to
uniform limit cycle oscillations of the current and voltage.

It should be noted that, depending upon the intersection of
the load line with the (u) characteristics, the DBRT repre-
sents either a bistable, or an oscillatory, or an excitable active

FIG. 2. (a8 Nonlinear kinetic functiorf(a,u) for different val-  medium[30]. It is remarkable that the DBRT can be operated
ues of voltagey, (b) diffusion coefficientD(a) as a function of the as an excitable system even in the spatially homogeneous
electron densitya (double-logarithmic scaje (c) current-voltage case. Consider the situation in FigaBwhere the load line
characteristic for spatially homogeneous stagedid ling) and fila-  intersects the homogeneous characteristic near the second
mentary states(dashed ling for L=30; load line for Uy  turning point at a low current valugj£4.63 ande =70).
=—84.2895,r = — 35 (dotted ling, (d) spatial profile of a half fla- pye to the large value of, the relaxation inu is much
ment,a(x) (solid ling) andj(x) (dotted ling (L =30;u=265). slower than the relaxation @ If noise pushes the system off
its fixed point in the low current regime, it quickly relaxes to

f(a,u)
» A~ D O N A~ C

258 260 262 264 266
u

jJa d Ja a value ofa=j in a high current state. Then, the slow relax-
gt ,TX(D(a) &) +i(a,u)—KFa(x,b), () ation inu sets in and drags the system along the homoge-
neous characteristic towards high'since we are above the
du 1 load line until the upper branch of the homogeneous char-
i ;(Uo—u—f<j>)—KFu(t)- ) acteristic ends. At this point, the system again quickly re-

laxes ina, this time towards a low current state. Since we are
now below the load line, the system finally returns to the
Here, the uncontrolled modg25] has been extended by the fixeq point. This excursion in phase space results in a spike-
control termskKF, andKF, representing the control forces |ike response in the current and voltage signal upon external

with amplitudeK. The dynamic variables are the inhibitor noise[Fig. 3(b)] which is characteristic for aexcitableme-
u(t) and the activatoa(x,t). The one-dimensional spatial diym.

coordinatex corresponds to the direction transverse to the

current flow. In the semiconductor contex{t) denotes the

voltage drop across the device amn¢x,t) is the electron Ill. SPATIOTEMPORAL SCENARIOS

density in the quantum well. The nonlinear, nonmonotonic

function f(a,u) describes the balance of the incoming and As the device width in x direction increase&he device
outgoing current densities in the quantum wlig. 2(@)]  width in y direction is fixed and small compared It9, the
andD(a) is an effective, electron density dependent trans-imiddle branch of the homogeneous solut'aiﬁm [Fig. 2(¢)]
verse diffusion coefficientrig. 2(b)] [29]. The local current becomes unstable against inhomogenous fluctuations. A
density in the device ig(a,u)=3[f(a,u)+2a] and (j) straightforward linear stability analysj49] shows that this
=1/L[§jdx is associated with the global current. Equationoccurs at
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tude around the unstable filamentary fixed point, which is
typical for a chaotic breathing scenario.

With further increase o oscillations around the homo-
geneous fixed point become important and a competition be-
tween the two fixed points sets in. Thereby, the breathing
filament transmutes into a spiking filament as in Fi@) $or
£=13.15. Here, two oscillations around the homogenous
fixed point are followed by one oscillation around the fila-
mentary fixed point. This periodic spiking quickly becomes
chaotic at further increase @f, yielding a chaotic spiking
behavior, which is characterized by a sequence of almost
homogeneous oscillations intermitted by one large filamen-
tary oscillation[Fig. 5b)]. The resulting phase portrait is
reminiscent of the Resler attractor. While breathing oscilla-
tions are always close to the filamentary fixed point, the spik-
ing oscillations are related to both the filamentary and the
homogeneous fixed point. The complete bifurcation diagram
with respect toe is depicted in Fig. 6. We note that the
homogeneous limit cycle emerging from a Hopf bifurcation
of the homogeneous fixed poiiitiotted ling at £=16.43
suppresses chaos with increasiagand finally becomes
stable against filamentary oscillations for-20.2, and fur-
ther on determines the dynamics of the system.

Using the Benettin algorithii82], we have calculated the

0 560 10'00 15'00 20'00 2500 3000 two largest Lyapunov exponenis; and N\, for varying e _
i (Fig. 7). We observe that at most one Lyapunov exponent is
positive, while the second one is zero for a chaotic orbit.

FIG. 3. DBRT in the excitable regimea) Spatially homoge-  Taking into account the third largest Lyapunov exponent, we
neous phase portrait of electron densiyvs voltageu for r can then estimate an upper limit for the fractal dimension of
=-2, Uy=248.11,L=30, £=70. Solid line: trajectory of the the attractor after Kaplan and York83] asDyy~2.1. Al-
system under noise. Dashed lines: Load listeaigh} and homoge- though the system has an infinite number of degrees of free-
neous current-voltage characteristit ¢hapedl Dotted lines: phase dom, it is therefore only weakly chaotic. The global coupling
flow of the system(b) Response o& andu triggered by noise. is responsible for the suppression of extensive spatiotempo-
ral chaoq34].

D(a}° |
L>a 2.t aem| 3) IV. TIME-DELAYED FEEDBACK CONTROL OF
a

CHAOQOTIC BREATHING AND SPIKING

Then, an additiongl stationa_ry solution of Ed) arises in the We now apply chaos control to stabilize a particular UPO
form of a current filament. Figure(@ shows the dependence of period 7 of the uncontrolled system which is embedded in
of a andj on the transverse spatial coordinatéor a half 5 chaotic attractor. The control forcEg andF, in Egs. (1)
filament with L=30 andu=265. The dashed line in Fig. and(2) will be designed such that they do not suppress chaos
2_(0) depicts the corresponding current-voltage characteristigy generating a new periodic solution but only by changing
(). _ the stability of a solution that already exists in the uncon-
The filament is stable for<0 at smalle, but becomes  trolled system. Hence;, andF , vanish exactly on the target
unstable by a Hopf bifurcation for large enough In this  orbjt. Such a requirement is, in general, met by time-delayed
case, complex spatiotemporal breathiiég. 4) and spiking  feedback scheme$]. Depending on the particular recipe,
patterng(Fig. 5 are expected if the homogeneous fixed pointwhich is used for the construction of the control forces, there
is still stable with respect to Hopf bifurcatioh31]. are various possible control schemes. Here, we are going to
Choosing the load line as in Fig(Q (dotted ling, the  analyze four cases which have been already introduced in
homogeneous fixed point on the middle branch is alwayRef.[16] in the context of reaction-diffusion models with a
unstable against the filamentary mode 1o+=30, but is  global feedback. The model we are investigating in the
stable against HOpf bifurcations up $6<16.43 (dotted line present paper, Eq&) and(z)’ is of much more interest from
in Fig. 6). On the other hand, a Hopf bifurcation of the half the point of view of semiconductor physics since it realisti-
filament occurs already af,=6.4, leading to periodic fila- cally describes a well-known nanostructure deViD8RT).
ment oscillationg Fig. 4(a)] for s>sf1. This breathingfila- It exhibits a Z-shaped current—voltage characteristic,
ment undergoes a period doubling cascadesfer8.2 lead- whereas the model in Ref16] describes a different semi-
ing to chaos[c.f. Fig. 4b)]. We note that the dynamic conductor heterostructure featuring @shaped current-
behavior is characterized by oscillations of varying ampli-voltage characteristic. A comparison with the results of Ref.
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[16] enables us to estimate which properties of the controtontrol scheme of this type is called extended time-delay
schemes are robust and do not depend on the particulautosynchronization. Such a scheme allowsrfoninvasive
choice of the model equations. In addition, we will find out control, since an unstable state may be maintained with van-
whether some schemes are particularly useful for applicatiorshingly small control forces.

in semiconductor devices. Concerning the details of the con- For the control forcd-, in the spatial degree of freedom,
trol schemes the reader may consult H&6]. But to keep  we will alternatively use either bbcal control force

our presentation self-contained, we recall the necessary no-

tation. F|0C(x,t):a(x,t)—a(x,t—7-)+RF|OC(X,t—1-), (5)
We may choosé ,=F; with a generic voltage feedback
force defined by where every spatial point is controlled independently of its
neighboring points or global control force
Fu(t)=u(t)—u(t—7)+RF,(t—17). (4)
Fgo(t) =(a)(t) —(a)(t— )+ RFg(t—7), (6)

Here,Ris a memory parameter which damps sudden changes
in the control force by taking into account multiple delayswith (a)=1/L[5adx, where the same control force is ap-
with a decaying weight of earlier states of the sysfdhA  plied to every spatial point. This second choigg=Fg,
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FIG. 5. Spatiotemporal spiking patterns: as in Fig. 4 (aite = 13.15, periodic spiking{b) ¢ =16.5, chaotic spiking.

may be experimentally favorable since the spatial average is Physically, the control forces may be realized by appro-
related to the total charge in the quantum well and does nqjriate electronic control circuit& F,, corresponds to an ad-
require a spatially resolved measurement. In the followingditional control voltage applied in series with the bidgand

we will concentrate on the question how the coupling of theKFa may be implemented by a spatially extended lateral gate

control forces to the spatial and discrete degrees of freedorgye 1o de which influences the two-dimensional electron gas
influences the performance of the control. The UPO in ques-

tion will be a flip orbit, i.e., its largest complex valued Flo- in the qgaqtum well locally or globally. .
quet exponenh will obey Im\ = /7. This type is practi- In principle, the control performance of time-delayed

cally important, as it naturally arises in period doubling fé€dback methods can be studied by linear stability analysis
scenarios, and the torsion of the orbit associated with isn  Of the differential-delay equatiortd) and(2) around the tar-

a necessary ingredient for time-delayed feedback control tget orbit. This is difficult for a general control scheme, since
work [35]. Recently, time-delay methods have also been exthe stability of the orbit is governed by Floquet eigenmodes
tended to the stabilization of orbits without torsion by addingand by the largest complex valued growth rategFloquet

a controller associated with an additional unstable degree afxponen), which are modified by the control force in a com-
freedom[36]. plicated way. Still there exists a particularly simple control
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268 . : : : : : : TABLE |. Overview of different control schemes with the cor-
e responding choices df, andF, .
c 266 | Type of control Fa F,
E Diagonal control Floc Ft
é Global control with voltage feedback Fgio Ft
:)E 264 Global control without voltage feedback Fgio 0
Pure voltage control 0 F
Local control without voltage feedback Floc 0
262
6 8 10 12 14 16 18 20 =sud|Ful,|Fodl} appears. This happens as the uncontrolled

system approaches and abandons the UPO ergodically. The
€ slope of the increasing control force is given by Such a
FIG. 6. Bifurcation diagram of maxima and minima of the volt- Pattern is useful for tuning the critical parameteempiri-
age U vs . Thick dotted lines—homogeneous solution; thick cally. After the diagonal control is switched on, the control
dashed lines—period-one breathing orbit, thick solid lines—periodforce decays exponentially §8|s~|expA(K,R)t| [Fig. 8(b)]
three spiking orbit. Parameters and load line as in Fig).2 to a new level which is about three orders of magnitude
smaller than the uncontrolled level. At the same time, the
scheme, called diagonal cont{@5,37], for which A (K,R) voltage signal becomes periodiEig. 8@] and the chaotic

satisfies the exact equation attractor in the phase portrait collapses to a one-dimensional
periodic orbit.
1— e*AT
A+K 7) (a) 268

— =\, T T T T T
=
264 | 8

where\ is the complex Floquet exponent of the uncontrolled
. : 262 . . . . .

system. Another control scheme for which analytic results 4920 4960 5000 5040 5080

are available is th&loquet mode controlvhere the control t

force is a projection onto the unstable Floquet mp&g18§|.

In our model, we achieve diagonal control by setthg (b) 0.1 ¢
=F,,c andF,=F (cf. Table ), which is a straightforward
extension of the diagonal control for discrete systeiefs _o 00
Ref.[38]). L oo b
We now want to control the period-one orkitashed line
in Fig. 6) in the chaotic breathing regimid=ig. 4(b)]. As 0.0001
explained in Sec. lIl, this orbit is generated by the supercriti- 4800 4850 4900 4950 5000 5050 5100 5150 5200
cal Hopf bifurcation of the stationary filament at=s?. It t
subsequently becomes unstable by the period doubling cas(c) 106
cade with increasing. From Fig. &b), we note that, before
the control is switched onK=0), a sawtoothlike structure
in the (fictitious, since not yet appligdcontrol force |F| 104
A
0r Y v 'V’ v‘
o4t 10 f
- 02} o8 |
-03
04l 9.6 : - .
-0. 263 264 265 266 267 268
05| .
0.6 ) ) ) FIG. 8. Diagonal control in the DBRT, where the control force is
6 7 8 9 10 switched on at=5000. (a) Voltageu vs time, (b) supremum of the
€ control force vs time(c) phase portraitglobal current vs voltage

showing the chaotic breathing attractor and the embedded stabilized
FIG. 7. The two largest Lyapunov exponents as a function of theperiodic orbit(thick solid curve. Parameterst =—35, £¢=9.1, 7
bifurcation parametes; load line as in Fig. 2. =7.389,K=0.137,R=0.
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FIG. 9. (a) Control domains in thek-R parameter plane for FIG. 10. Same as Fig. 9 for global control with voltage feedback
diagonal control of the unstable periodic orbit of Figbywith  [(b): R=0.7].
period 7=7.389. @ denotes successful control in the numerical
simulation, - denotes no control, lines: analytical result accordingback (i.e., global control with voltage feedback in Table |
to Eg. (7). (b) Leading real parts\ of the Floquet spectrum for Figure 10 shows the corresponding control regime and Flo-
diagonal control in dependence #h(R=0), the dotted line de- quet spectrum. The control domain looks similar in shape as
notes a complex conjugate pair of Floquet expone@tsdenotes  for diagonal control, although the domain for the global
analytical results from Eqy7). scheme is drastically reduced. The shift in the control bound-
aries is due to a different scenario in the Floquet spectrum.
By changing the control parametéfsandR, we observe Now ReA decreases more slowly with increasikighan in
that the regime of successful control in tkeR plane[Fig.  the diagonal case, and thus the flip bifurcation takes place at
9(a)] exhibits a typical triangular shape, bounded by a fliplarge values oK. At the same time, the complex conjugate
instability (ReA=0, ImA==/7) to its left and by a Hopf pair responsible for the Hopf bifurcation crosses the zero
(torus bifurcation to its lower right. These two boundaries axis with a larger slope and therefore at a smalevalue
may also be obtained by solving E(f) for ReA=0. We than in the diagonal case.
find that the analytical prediction for the control boundaries It is now interesting to note that if we kedp,=Fg, as
are in excellent agreement with the numerical resigee  before but remove the voltage feedback completely, the con-
Fig. 9@]. trol domain is shifted to highdf values and at the same time
To confirm the bifurcations at the boundaries, we consideis dramatically increasddrig. 11(a)]. From the Floquet spec-
the real part of the Floquet spectrum of the orbit subjected tarum, we see that after the flip bifurcation the largest Floquet
control for varyingK andR=0 [Fig. 9b)]. Complex conju- exponent does not immediately hybridize into a complex
gate Floguet exponents show up as doubly degenerate paitonjugate pair, but the Hopf bifurcation is caused by another
The largest nontrivial exponent decreases with increalking complex conjugate pair which is not connected to the largest
and collides at negative values with a branch coming fronFloquet exponent. Thereby, the Hopf bifurcation is sup-
negative infinity. As a result, a complex conjugate pair dejpressed and the control regime is increased. This behavior is
velops and the real part increases again. The real part of theery similar to the one observed in a different reaction-
exponent finally crosses the zero axis giving rise to a Hopfliffusion model(modeling a heterostructure hot electron di-
bifurcation. The numerical simulations agree well with theode, HHED [16], where it was found that additional control
analytical result. of the global variableu may gradually reduce the control
We now replace the local control forde,=F,,. by the  regime to zero.
global controlF,=F, without changing the voltage feed- From the practical point of view, the most relevant control
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FIG. 11. Same as Fig. 9 for global control without voltage feed- FIG. 12. Same as Fig. 9 for pure voltage confi@): R=0.6].

back[(b): R=0.1]. Note that the scale of tfé axis is changed. voltage control. If the voltage control is switched on, the

largest Floquet exponent rises quickly after the collision with

scheme is the pure voltage control, i.E,=F,, F;=0, an exponent coming from below and participates in the Hopf
since the voltage variable may be conveniently measured arffurcation at the right boundary of the control regime. If on
manipulated by an external electronic device. The correthe other hand, the voltage control is switched off, the largest
sponding control domain and Floquet exponents are showRloquet exponent only rises slowly after the collision, and
in Fig. 12. Here, the control regime is even somewhatften the Hopf bifurcation at the right boundary is caused by
smaller than in the case of global control with voltage feed-a complex conjugate pair which is independent of the largest
back but the shape of the control regime and the Floquefloquet exponent. In this case, the Hopf boundary is shifted
spectrum are qualitatively very similar. It is encouraging thatto larger values oK than for diagonal control. The choice of
this kind of control is at all possible, since it opens up thethe control forceF, influences the decrease of R¢K) at
opportunity to conveniently study chaos control in a realsmall K. For F,=F,,. this decrease is large and the flip
world device. boundary practically coincides with the one obtained for di-

We finally consider the case of local control without volt- agonal control, while forF,=F, the flip boundary is
age feedbackFig. 13. Here, the control regime is surpris- shifted to higherK values sincddxReA (K)| is small. For
ingly even larger than for diagonal control. The shape of the,=0, the slopd d<ReA (K)| is even smaller, shifting the
control regime is not triangular any more as before, but hagoundary to even highef values.
an additional edge at loW andR values. The reason for this So far, we have stabilized the period-one breathing orbit.
edge can be explained from the Floquet diagram. Here, ®W/e have investigated whether the obtained results are spe-
Floquet exponent from below collides with the largest Flo-cific for a given UPO or whether similar results can be ob-
guet exponent at positive real values before the flip bifurcaserved for different orbits such as the period-three spiking
tion occurs. This complex conjugate pair then crosses therbit (cf. thick solid lines in Figs. 5 and)évhich stands for
zero axes from above and undergoes an inverse Hopf bifuthe second basic dynamical pattgspiking in the DBRT
cation. For larger values & another complex conjugate pair system. Figure 14 shows the control regimes for different
performs a second Hopf bifurcation seemingly unrelated taontrol schemes. Again we note that diagonal control is very
the first one. well predictable by the analytic formulér) [Fig. 14a)],

An overview of the different coupling schemes consideredvhereas omitting the voltage control shifts the Hopf border
in this section is given in Table I. By comparing the differentto large K values and replacing local with global control
control schemes, we may characterize the influence of thehifts the flip boundary to largef values. For pure voltage
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FIG. 13. Same as Fig. 9 for local control without voltage feed-
back[(b): R=—0.55]. o
control and global control with voltage feedback no domain
of control was found. Nevertheless, features of the different
control schemes are similar for both breathing and spiking
orbits.

V. TRACKING AND DEPENDENCE OF THE CONTROL
PERFORMANCE ON THE LYAPUNOV EXPONENT FIG. 14. Control domains for spiking orbit. Lines: analytical
results for diagonal contro(a) diagonal control(b) global control

Having stabilized periodic orbits for a particular set of without voltage feedbackic) local control without voltage feed-
parameter values, one is in addition able to follow such amack (parameterse =13.44, 7=20.15).
orbit through a continuous change of a parameter. Such a
kind of tracking is quite common in control of chaos and has In Fig. 15a), the control performance for global control
been demonstrated even in the context of time-delayed feedvith voltage feedback for fixeR is plotted. As expected, the
back control. The period-one breathing orbit can be confegime of control is considerably smaller than the analytical
trolled continuously in a whole range of valuessofcf. thick  predictions for diagonal control. Figure (& shows the con-
dashed lines in Fig. 6 for diagonal confroNote that since trol performance for pure voltage feedback and different val-
the periodr of the UPO depends os, 7 needs to be read- ues forR. Although the control regimes are much smaller
justed while sweeping. It is then even possible to stabilize than predicted for diagonal control, the trend in the shift of
the period-one orbit in higher periodic windows, where thethe control regime for increasing is qualitatively similar.
target orbit is obviously not part of the attractor. This opens Surprisingly, we find a finiték value for the flip boundary
up the possibility of obtaining stable self-sustained voltageas A 7—0 [Fig. 15b)]. This is in marked contrast to the
oscillations independently of parameter fluctuations. Theanalytical results for diagonal control, where the flip bound-
Floquet exponenk also depends oa and this allows us to ary extrapolates to zero forr—0. To understand why this
study the control performance as a function of the largests the case, let us consider a situation where we apply pure
Floguet exponent of the UPO. Thus, through the trackingsoltage control to atableorbit. From the Floquet spectrum
scheme we are also able to study the influence of thén Fig. 16, we see that with increasing control force the
Lyapunov exponent on the control performance and to comstable orbit is destabilized by a flip bifurcation, then becomes
pare the result with recent theoretical predictipBg|. stable again by a second flip bifurcation, before it finally
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(a 25 T — T T T T 0.05
2 L
15} S < 0
[ S e, Q)
< N o
0.5 -0.05 |
O o5 1 15 2 25 3 35 4 0 01 02 03 04 05 06 07
7K K
(b) 4 . r r r . T r FIG. 16. Leading real partd of the Floquet spectrum for pure
. R=0.3 e . . .
35 4 Ro02 e voltage control of a stable period-one breathing orbit in dependence
’ i R=0.1 onK (R=0.6£=8.0).
31 R=03 o .
. R92 - sion of the voltage feedback in the control scheme has the
25 . ] tendency to reduce the control performance. But for the
L 2 model system studied here, which is better adapted to the
151 semiconductor context, we find that even pure voltage feed-
’ back is sufficient for successful control. Thus, as a control
17 scheme which is particularly simple to realize experimen-
0.5 tally, albeit with a small control regime which requires care-
. . . . : . . ful adjustment of the control parametdrsand K, we have
0 0 05 1 15 2 25 3 35 4 singled out pure voltage control. Our findings may be impor-

K tant for obtaining stable self-sustained voltage oscillations in
resonant tunneling diodes independently of parameter fluc-
FIG. 15. Control domain in th&-K plane(a) for global control  tuations.
with voltage feedback R=0.1), @—simulation; dotted line—
analytical result for diagonal control from E(), (b) pure voltage ACKNOWLEDGMENTS

control [symbols—simulation with different values & as given . )
in the legend:; lines—analytical results for diagonal control from 1 NiS work was supported by DFG in the framework of
Eq. (7). Sfb 555.

undergoes the usual Hopf bifurcation at higtvalues. Such APPENDIX
a reentrance scenario does not happen for diagonal control. |, this Appendix, we provide analytical expressions for
the functionsD(a) and f(a,u) appearing in Eq(1) and re-

VI. CONCLUSIONS late the dimensionless quantities used throughout this paper
We have applied different schemes of chaos control b)?tti::jir respective dimensional physical quantities marked by

time-delay autosynchronization to a globally coupled ~
reaction-diffusion model describing charge transport in a The voltage drop across the DBRit) and the external
semiconductor nanostructure, viz a DBRT diode. The spabias voltageU, are related to their dimensionless counter-
tiotemporal dynamics and bifurcation scenarios of the unconparts by u=eTJ/(kBT) and UO:eDO/(kBT)’ respectively,
trolled DBRT in an external circuit display a variety of com- with the temperaturd, the electron charge<0, and Bolt-
plex patterns, including breathing and spiking oscillationszmann’s constarkg . The two-dimensional electron density

either of which can be periodic or chaotic. is rescaled vim=an#%?/(mksT), wherem is the effective

we hayg showp that by .l.JSing time-delayed. feEdbadfnass of the electron in the well. Time and space coordinates
methods, it is possible to stabilize unstable breathing or spik-

ing patterns. Different control scheme were compared WitH’”ﬁ re;czil?d .byth:tFL/h. and X:)]f/ Vﬁ'i‘kBT/(_feF'-)' h
respect to efficiency, and quantitative comparisons of theitV''¢¢ A IS the transng)nd r]:alte orr] electrons rorrlwlt e
respective control domains in tleK parameter space were emitter to the quantum welland from the quantum well to

given and interpreted in terms of the Floquet spectra. Thosth® (;]‘.Jllec.t%and'“ s ”‘I? ele(;tron mobility(.j . .
turned out to be helpful to gain insight into the control ~T '53 yields a rescalng~02 current ar; reS|stan_ceJ as
mechanisms and understand why the control performance)7h°/(emigTl ) andr=re“mAl'| /(7%°), respectively,
may, e.g., be improved by omitting control of the voltageWhereA is the cross sectional area of the device. Note that
variable. Our findings confirm the results obtained previ-the effective resistance, in general, contains two terms

ously for a different mod€d]16] on a qualitative level. Inclu- =R—k, whereR represents an external resistor anarises
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from an active circuit with a voltage gaid.=kjA [27]. In  from the emitter to the quantum well and from the well to the

the casé>R, this leads ta <0 with particularly interesting ~ collector, respectively25]:
chaotic scenarios, as shown in the main text. The time-scale

ratio is given bye=RCI'| /%, whereC is the total capaci- 1 1 2 u d
tance of the circuit. flau=|5+ ;arctar{; Xom 3t
The effective diffusion coefficienD(a) may be calcu-
lated by considering a generalized form of Einstein’s relation u d
which covers the full range from Fermi-degenerate to non- X|In 1+ex;< e~ X0t 5~ Ea -ajTa
degenerate conditions and a drift term resulting from the
change in the local potential due to Poisson’s equdt®i (A2)
1 Here, y andx, describe the broadening and the energy level
D(a)=a EJF 1—exg-al/’ (A1) of the electron states in the quantum well ang is the

dimensionless Fermi level in the emitter, all in unitskafT.
whererg=(4meeyhi?)/(€2m) is the effective Bohr radius in In this paper, we choosg=6, d/rg=2, 7,=28, andx,
the semiconductor materiag and €, are the relative and =114. Typical physical values correspond to units of time,
absolute permittivity of the material, respectively, athds  space, voltage, electron density, and current density of the

the effective thickness of the double-barrier structure. order of 3.3 ps, 100 nm, 0.35 mV, focm 2, 500 Acm 2,
The functionf(a,u) is obtained from a microscopic con- respectively, for d=20 nm, I'|=T'gr=0.2 meV, kgT
sideration of the tunneling currentk,(a,u) and J,.(a) =0.32 meV =4 K).
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